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Abstract

Many of the actual materials are anisotropic, ranging from natural products to the most sophisticated composite

materials. Special emphasis needs to be devoted to the heat and mass transfer calculations in anisotropic media, and to

the development of visualization tools for the transport phenomena occurring in such media, similarly to what happens

with isotropic media. The most adequate tools for visualization purposes are the streamlines, the heatlines and the

masslines, when dealing with two-dimensional steady problems without source terms. Moreover, further attention

needs to be devoted to the diffusion coefficients for the streamfunction, heatfunction and massfunction, whose contour

plots are used for visualization purposes. This is specially important for domains of marked anisotropy or for domains

involving media of different properties, or even conjugate diffusion/convection heat and mass transfer problems. Once

defined the proper diffusion coefficients, it is proposed a unified physical treatment, as well as a unified treatment to

evaluate the function�s fields by using the same numerical procedures and code routines as for the primitive conserved

variables. The unified approach is illustrated through pure conduction heat transfer problems, natural convection heat

transfer in a porous enclosure, and conjugate conduction–convection heat transfer.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The heatflux lines are well established to visualize heat

transfer by pure conduction in isotropic media [1]. The

concept evolved to the heatlines, through the introduction

of the heatfunction in the 80�s, its application extending to

the field of convection heat transfer [2,3]. Many examples

of heatline applications in convective heat transfer can be

found in the literature [2–15], as well as in some conjugate

conduction-convection heat transfer problems in isotro-

pic media [16–18]. A natural extension of the method was

made to the field of convective mass transfer through the

introduction of the massfunction and massline concepts

[19]. These have been applied to pure convective mass

transfer [14,19] and conjugate diffusion-convection mass

transfer in isotropic media [16–18], as well as to convec-

tion heat transfer in isotropic porous media [13,14].

From the physical and numerical viewpoints, the

streamline, heatline and massline concepts have been

unified to deal with isotropic media [18], with the proper

diffusion coefficients for the streamfunction, heatfunc-

tion and massfunction. Such diffusion coefficients have

been involved in some discussion for domains with

portions of different transport properties [20,21]. An

extension was made to the use of the heatlines and

masslines in reacting flows [22], the conserved scalar

variables being the total enthalpy (sum of sensible

enthalpy and enthalpy of reaction) and the atomic mass

fractions of the individual elements. The natural evolu-

tion of the work reported in [18] is the unification of the

streamline, heatline and massline methods to apply to

anisotropic media, where special care needs to be de-

voted to the diffusion coefficients for the streamfunction,

heatfunction and massfunction. This is the objective of

the present work.
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The mostly used numerical methods to solve heat and

mass transfer problems are control-volume based, being

thus developed for conserved variables. However, they

can be also used for variables that are not conserved, but

whose differential equations are formally similar to that

of the conserved variables, as it is the case of the

streamfunction, heatfunction and massfunction. Thus,

all the variables, conserved or not, can be evaluated

using the same numerical procedures and code routines

as developed for the primitive conserved variables.

The involved anisotropic media can be a solid, where

pure heat conduction or/and pure mass diffusion occurs,

or a porous media where fluid flows (Darcy flow) and

convective heat or/and mass (chemical species) transfer

occurs. The global domain under analysis can be com-

posed of solid and porous portions, as well as of an-

isotropic and isotropic portions. The isotropic situation

is just a particular case of the general anisotropic one.

2. Physical modeling

2.1. General formulation

The usual steady two-dimensional heat and mass

transfer phenomena can be expressed in terms of fluxes

through the general differential equation,

o

ox
ðJ/;xÞ þ

o

oy
ðJ/;yÞ ¼ S/ ð1Þ

where / is the generic primitive conserved variable. In

the present work, attention will be given to the situations

with null source term, S/ ¼ 0, the unique situation for

which the functions and lines under analysis make sense.

Situations with non-zero source terms for a particular /
cannot be treated with the visualization tools developed

in the present work.

As the media under analysis are anisotropic, the

fluxes in Eq. (1) are expressed as

J/;x ¼ quð/ � /0Þ � ðC/;nl21

�
þ C/;gl22Þ

o/
ox

þ ðC/;nl1m1 þ C/;gl2m2Þ
o/
oy

�
ð2Þ

J/;y ¼ qvð/ � /0Þ � ðC/;nl1m1

�
þ C/;gl2m2Þ

o/
ox

þ ðC/;nm2
1 þ C/;gm2

2Þ
o/
oy

�
ð3Þ

where u and v are the area averaged Cartesian velocity

components [3], C/;n and C/;g are the principal diffusion

Nomenclature

cp constant pressure specific heat

C concentration

D mass diffusivity

g gravitational acceleration

H heatfunction

J transport flux

k thermal conductivity

K permeability

l direction co-sine

L length (height)

m direction co-sine

M massfunction

p pressure

R ratio between the transfer properties

Ra Darcy Rayleigh number

s surface boundary

S source term

T temperature

u; v Cartesian velocity components

x; y Cartesian co-ordinates

Greek symbols

a thermal diffusivity

b volumetric expansion coefficient

C generic diffusion coefficient

c anisotropy angle: thermal conductivity

D difference value

d anisotropy angle: permeability

l dynamic viscosity

m kinematic viscosity

q density

/ generic intensive variable

U generic function for visualization

w streamfunction

Subscripts

b at the boundary

C cold (lower value)

H hot (higher value)

i chemical mass species i
k referring thermal conductivity

K referring permeability

P at local boundary point P

x; y referring Cartesian co-ordinates

0 reference value

1,2 indices of direction co-sines

1,2 portions with different properties

n; g referring direction co-sines

/ referring generic variable /
U referring generic function U
w referring streamfunction

� dimensionless
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coefficients for / along the n; g principal Cartesian

directions, which are related with the x; y Cartesian

co-ordinate system through the direction cosines l1;
l2 and m1;m2. /0 is a reference value for /, taken

as its lower value in the entire domain [14,18].

With C/;xx ¼ C/;nl21 þ C/;gl22, C/;yy ¼ C/;nm2
1 þ C/;gm2

2 and

C/;xy ¼ C/;yx ¼ C/;nl1m1 þ C/;gl2m2, Eqs. (2) and (3)

come

J/;x ¼ quð/ � /0Þ � C/;xx
o/
ox

�
þ C/;xy

o/
oy

�
ð4Þ

J/;y ¼ qvð/ � /0Þ � C/;xy
o/
ox

�
þ C/;yy

o/
oy

�
ð5Þ

Inserting these fluxes in Eq. (1), with S/ ¼ 0, one obtains

the general convection–diffusion differential trans-

port equation for / in two-dimensional anisotropic

media

o

ox
qu/

�
� C/;xx

o/
ox

�
þ C/;xy

o/
oy

��

þ o

oy
qv/

�
� C/;xy

o/
ox

�
þ C/;yy

o/
oy

��
¼ 0 ð6Þ

If the fluid flow subsides (stagnant fluid or solid

medium, u ¼ v ¼ 0), this corresponds to a pure diffusion

situation. The energy equation can be considered if there

are no source or sink terms, and the i species mass

conservation equation can be considered if there is no i
species production or destruction (no chemical reactions

involving i species). Some particular meanings of / are

presented in Table 1, the equations being considered in

their conservative form, as they are to be solved using

numerical methods developed for that purpose. The

global mass conservation ð/ ¼ 1Þ, with null diffusion

coefficients and null source term, is valid for any me-

dium without nuclear reactions as in the present case,

becoming o=oxðquÞ þ o=oyðqvÞ ¼ 0. The terms involving

/0 vanish in Eq. (6), by invoking the global mass con-

servation equation.

When dealing with saturated porous media, the ve-

locity components are related to the pressure gradient

and the body force (in this case only the gravitational

acceleration, being the x; y co-ordinate system placed

such that gx ¼ 0 and gy ¼ �g) through the Darcy flow

model, which is sufficient for many practical applica-

tions [23]

u ¼ � 1

l
Kxx

op
ox

�
þ Kxy

op
oy

�
þ qg

��

v ¼ � 1

l
Kxy

op
ox

�
þ Kyy

op
oy

�
þ qg

��
ð7Þ

However, if there are interfaces between fluid saturated

porous media and pure fluids (the latter governed by the

complete Navier–Stokes equations), or the Reynolds

number is high enough such that inertial effects must be

taken into account, more detailed and complete models

(usually the Brinkman and Forchheimer modifications,

respectively) are needed [23].

Inserting the velocity components as given by Eq. (7)

into the overall mass conservation equation, expressed

as o=oxðquÞ þ o=oyðqvÞ ¼ 0, a diffusion equation is ob-

tained with the pressure as the main dependent variable.

It should be noted that p is not a conserved variable, the

diffusion equation for p appearing due to the use of

the Darcy flow model. If the properties are constant or

the gravity influence is absent, the source term of the

differential equation for p vanishes. If natural convec-

tion is to be modeled using the Boussinesq approach,

only the density directly related with the gravity accel-

eration should be taken as dependent on the tempera-

ture, q2 in the last row of Table 1 being expressed as

q2 ¼ q0fq0½1� bðT � T0Þ	g.
The function Uðx; yÞ, whose contour plots are used

for visualization purposes, is defined through its first

order derivatives as

oU
oy

¼ J/;x ¼ quð/ � /0Þ � C/;xx
o/
ox

�
þ C/;xy

o/
oy

�
ð8Þ

� oU
ox

¼ J/;y ¼ qvð/ � /0Þ � C/;xy
o/
ox

�
þ C/;yy

o/
oy

�
ð9Þ

Equating the second order cross derivatives of U, being

implicitly assumed that it is a continuous function to its

second order derivatives, Eq. (6) is identically obtained.

The total differential of U is obtained as

dU ¼ oU
ox

dxþ oU
oy

dy ¼ �J/;y dxþ J/;x dy ð10Þ

If dU ¼ 0 along a given segment ds, such that

ðdsÞ2 ¼ ðdxÞ2 þ ðdyÞ2, it means that there is no / flow

crossing such segment, that is, a U constant line is not

crossed by the / flow, being thus a line that is tangent to

Table 1

Physical principles, diffusion coefficients and source terms for different particular meanings of /

Physical principle / C/;xx C/;yy C/;xy S/

Overall mass conservation 1 0 0 0 0

i species mass conservation Ci qDi;xx qDi;yy qDi;xy 0

Energy conservation T kxx=cp kyy=cp kxy=cp 0

Overall mass conservation (Darcy flow model) p qKxx=l qKyy=l qKxy=l o
ox

q2gKxy

l

� �
þ o

oy
q2gKyy

l

� �
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the flow vector [18]. A difference DU between the U
values at two points represents the / flow, which crosses

the segment linking these points. This is especially in-

structive because it illustrates the streets comprised be-

tween two constant U lines, along which are transferred

the / flows. The lines of constant U (the contour plots of

function U) are the most effective tools for visualization

purposes of the transport phenomena related with the

corresponding / variable [18].

From Eqs. (8) and (9) it can be obtained that

o/
ox

¼ �C/;yy

C2

oU
oy

� C/;xy

C2

oU
ox

þ C/;yy

C2
quð/ � /0Þ

� C/;xy

C2
qvð/ � /0Þ ð11Þ

o/
oy

¼ C/;xx

C2

oU
ox

� C/;xy

C2

oU
oy

þ C/;xx

C2
qvð/ � /0Þ

� C/;xy

C2
quð/ � /0Þ ð12Þ

where

C2 ¼ C/;xxC/;yy � C2
/;xy ð13Þ

From irreversible thermodynamics, it is stated that

C/;n > 0 and C/;g > 0 [24,25]. If the co-ordinate systems

are such that the system x; y is obtained from the

(principal) system n; g by a rotation of amplitude c, the
direction cosines are l1 ¼ cos c, l2 ¼ � sin c, m1 ¼ sin c
and m2 ¼ cos c. It comes then that C/;xx ¼ C/;n cos

2 cþ
C/;g sin

2 c, C/;yy ¼ C/;n sin
2 c þ C/;g cos

2 c, C/;xy ¼ ðC/;n �
C/;gÞ sin c cos c and C2 ¼ C/;nC/;g, being thus, effectively,

C2 > 0.

Assuming now that / is a continuous function to

its second order derivatives, it can be established the

equality of its second order cross derivatives, obtained

from Eqs. (11) and (12), leading to the equation

0 ¼ o

ox
C/;xx

C2

oU
ox

� �
þ o

oy
C/;yy

C2

oU
oy

� �

þ o

ox
C/;xy

C2

oU
oy

� ��
þ o

oy
C/;xy

C2

oU
ox

� ��

þ o

ox
qð/ � /0Þ

C2
ðC/;xxv

��
� C/;xyuÞ

�

� o

oy
qð/ � /0Þ

C2
ðC/;yyu

�
� C/;xyvÞ

��
ð14Þ

This is a diffusion equation for U in anisotropic media,

with the source term (present in its second row). It is

evident from Eq. (14) that the diffusion coefficients for U
are

CU;xx ¼
C/;xx

C2
CU;yy ¼

C/;yy

C2
CU;xy ¼

C/;xy

C2
ð15Þ

If the x; y co-ordinate system is coincident with

the principal system, it is CU;xx ¼ CU;n ¼ 1=C/;g and

CU;yy ¼ CU;g ¼ 1=C/;n, i.e., the principal diffusion coeffi-

cients for U are the inverse of the diffusion coefficient for

/ in the perpendicular directions. For isotropic media,

it comes that CU ¼ 1=C/, as proposed in [18].

Similarly to what was made to obtain the differential

equation for U, defining the streamfunction w (overall

massfunction) through its first order derivatives as

ow=oy ¼ qu � ow=ox ¼ qv ð16Þ

it is obtained the diffusion equation for w,

0 ¼ o

ox
lKxx

qK2

ow
ox

� �
þ o

oy
lKyy

qK2

ow
oy

� �

þ o

ox
lKxy

qK2

ow
oy

� ��
þ o

oy
lKxy

qK2

ow
ox

� ��
� o

ox
ðqgÞ

ð17Þ

where K2 ¼ KxxKyy � K2
xy , which is formally similar to

Eq. (14). It is evident that the diffusion coefficients for w
are

Cw;xx ¼
lKxx

qK2
Cw;yy ¼

lKyy

qK2
Cw;xy ¼

lKxy

qK2
ð18Þ

The source term in Eq. (17), �o=oxðqgÞ, vanishes in the

case of constant property fluids or absent gravity effects,

but it is a driving term in natural or mixed convection

situations.

Eqs. (6), (14) and (17) are formally similar (the dif-

ferential equations for U and for w having null convec-

tive terms) and, for each particular U, its solution can be

obtained by following the same procedures as for /,
once the boundary conditions are established. In this

way, U is treated as a conserved variable even if it is not

a physically conserved variable. From a physical view-

point, it is thus proposed an unified treatment for the

functions whose contour plots are used for visualization

purposes when dealing with transport phenomena in

two-dimensional anisotropic media.

The coupling between / and U, as well as the cou-

pling between the diffusion coefficients for / and for U,

and the particular meaning of U for some usual situa-

tions are summarized in Table 2.

2.2. Boundary conditions

The function U is defined through its first order de-

rivatives (Eqs. (8) and (9)), being important only dif-

ferences on the U values but not the U level. The U field

is usually evaluated once its corresponding / field is

known (Table 2), the U values over the boundaries being

obtained by integrating the flux of / through the

boundaries. An exception can be the evaluation of the

flow field primarily by solving the streamfunction Eq.

(17). Extending the procedure to all the domain

boundaries, starting from any suitable reference point,

leads to first kind boundary conditions for U over all the
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domain boundary. Starting from a reference point at the

boundary, where U ¼ Uref;b, the value of U at a generic

point P, b located at the boundary is evaluated as

UP;b ¼ Uref;b þ
Z P;b

ref;b

J/ � ndsb ð19Þ

When the boundary under analysis is not crossed by the

flux J/ it is obvious that it is U ¼ constant over such a

boundary.

Due to their physical nature, / and U are C0 con-

tinua. Thus, at each point of any interface between

contiguous portions 1 and 2 of the domain, even with

different properties (as it is the case of conjugate heat

and/or mass transfer problems) it is

/1 ¼ /2 U1 ¼ U2 ð20Þ
Also due to its physical nature, U1 ¼ U2 (or w1 ¼ w2)

guarantees the conservation of / through such an in-

terface.

Using the correct diffusion parameters, the field of a

particular / or U can be evaluated simultaneously in the

overall domain, even if it is composed by portions with

different transport properties [26].

3. Numerical modeling

From a numerical viewpoint, Eq. (6) is a convection–

diffusion equation for anisotropic media. Due to the fact

that, in general, C/;xy 6¼ 0, there are the diffusive terms

o=oxðC/;xyo/=oyÞ and o=oyðC/;xyo/=oxÞ involving / ex-

plicitly that are not present when dealing with isotropic

media. Thus, a most general numerical procedure was

developed in order to directly account (in a fully implicit

manner) for these additional diffusive terms, instead of

its inclusion in a fictious source term for the / equation.

The differential equation for U (Eq. (14)) (or for w) is
a conduction type equation, also with the additional

diffusive terms o=oxðCU;xyoU=oyÞ and o=oyðCU;xyoU=oxÞ,
which are absent when dealing with isotropic media. As

the numerical procedures used for U are the same as

used for /, such terms are directly accounted for in a

fully implicit manner and not taken as part of the source

term of Eq. (14). It should be stressed that the U equa-

tion includes a true source term if the fluid flow subsists.

The w equation (17) is also a conduction-type equation,

treated in the same way as explained for U, and its

source term vanishes only in the case of constant prop-

erties or absent gravitational effects.

The differential equations were taken in the conser-

vative form, as they are to be solved through control-

volume based numerical methods, designed for conserved

variables. However, it should be retained that each par-

ticular U (or w) is not a conserved variable. This is not a

serious problem, as its contour plots are used mainly for

visualization purposes.

Variables p and w are not conserved variables, and it

is from their fields that can be evaluated the velocity

field. This velocity field does not strictly verify the mass

conservation equation at the control volume level. The

differential pressure diffusion equation (the last row of

Table 1) is a reasonable description of the mass con-

servation equation, but it is well known that a Poisson

equation for the pressure can well describe the mass

conservation at a differential level but not at the control

volume level [26,27].

When dealing with porous media, the pressure–

velocity link is given by the Darcy flow model (Eq. (7)).

The flow field can be evaluated from the pressure field, this

one being known from the solution of the pressure diffu-

sion equation (last row of Table 1), with the appropriate

pressure boundary conditions. These are straightforward

in closed domains or in open domains with known pres-

sure or pressure gradient at the boundaries. The flow field

can also be evaluated once the streamfunction field is

known, which is obtained as the solution of the stream-

function diffusion equation (17), with the appropriate

streamfuntion boundary conditions. In closed domains or

in open domains with known velocities or mass fluxes at

the boundaries the boundary conditions are easily speci-

fied. This is the way followed in the present work.

Once the adequate diffusion coefficients for /, U and

w are defined, even when the global domain includes

portions with different transport properties, the conju-

gate heat and/or mass transfer problems are solved si-

multaneously in the overall domain for each particular

variable, a procedure with noticeable advantages [26].

The numerical method used in this work is a two-

dimensional laminar version of the control-volume

based finite element method described in [28], adapted to

include the additional diffusive terms present in aniso-

tropic media in a fully implicit manner. To converge, the

method is very sensitive to the relaxation factors, which

Table 2

Coupling of / and U and the diffusion coefficients for U for some usual situations

Physical principle / U CU;xx CU;yy CU;xy U Contour plots

Overall mass conservation 1 w––Streafunction lKxx
qK2

lKyy

qK2

lKxy

qK2 Streamlines

i species mass conservation Ci Mi––i species massfunction
Di;xx

qD2
i

Di;yy

qD2
i

Di;xy

qD2
i

i species masslines

Energy conservation T H–– Heatfunction
cpkxx
k2

cpkyy
k2

cpkxy
k2 Heatlines

K2 ¼ KxxKyy � K2
xy , D

2
i ¼ Di;xxDi;yy � D2

i;xy and k2 ¼ kxxkyy � k2xy .
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need to be well adjusted by trial and error for each case.

The diffusion coefficients are taken as constant over each

finite element, implying the location of nodes at the in-

terfaces when dealing with domains composed by por-

tions of different properties. A uniform 101 101 mesh

was selected after some preliminary testes of asymptotic

type.

4. Illustrations

In order to illustrate the unified approach proposed,

three types of heat transfer problems were considered:

pure conduction, pure natural convection in a porous

enclosure and conduction/convection conjugate prob-

lem. The mass transfer calculation of a particular

chemical species is similar to the heat transfer calcu-

lation, and finding the masslines for such chemical

species is similar to finding the heatlines. Thus, the

proposed procedure is illustrated through heat transfer

problems only. The overall domain under analysis,

sketched in Fig. 1, is always a square of side length

L, which can be uniform or composed by two (left

and right) halves of different properties. The upper and

lower boundaries are adiabatic and impermeable, and

the heat transfer process occurs always from the iso-

thermal hot left vertical boundary to the isothermal

cold right vertical wall. The vertical boundaries are

impermeable. The anisotropy angles are denoted as c
for thermal conductivity and as d for permeability. As

sketched in Fig. 1, such angles are measured between

the horizontal direction x and the first principal direc-

tion n, which can be different for thermal conductivity

ðn; kÞ and for permeability ðn;KÞ.
The space co-ordinates are made dimensionless as

x� ¼ x=L and y� ¼ y=L, and the temperature is made

dimensionless as T� ¼ ðT � TCÞ=ðTH � TCÞ. Additional

dimensionless parameters governing the problem are the

thermal conductivity anisotropy angles for media 1 and

2, c1 and c2, respectively, the ratio between the principal

thermal conductivities Rk ¼ kg;k=kn;k for media 1 and 2,

Rk;1 and Rk;2, respectively, and the ratio between the

principal thermal conductivities of media 2 and 1,

Rk;21 ¼ kðn;kÞ;2=kðn;kÞ;1. The heatfunction is made dimen-

sionless as H� ¼ H=½kðn;kÞ;1ðTH � TCÞ	, the reference value
used to make H dimensionless being kðn;kÞ;1ðTH � TCÞ ¼
kðn;kÞ;1  L ½ðTH � TCÞ=L	, the one-dimensional con-

duction heat flow that crosses all the domain in the x
direction (by unit depth) under the thermal conductivity

kðn;kÞ;1. The value of the heatfunction is set null over the

lower adiabatic boundary of the domain. As the upper

and lower boundaries of the domain are adiabatic, the

heatfunction value gives very useful information about

the global heat transfer crossing the domain [18]. Ad-

ditional dimensionless parameters and reference values

will be introduced when needed.

4.1. Conduction heat transfer

The domain is always composed by two-halves of

different thermal conductivities, and the illustration of

the procedure for pure conduction problems is given

through the isothermals (left side) and heatlines (right

side) for each case considered.

In Fig. 2a and b are presented the results for aniso-

tropic medium 1 and isotropic medium 2, with different

anisotropy angles for medium 1 and different thermal

conductivity ratios Rk;1 and Rk;21. In Fig. 2c and d are

presented the results for anisotropic media 1 and 2, with

different anisotropy angles (with the same sign in both

media) and different thermal conductivity ratio Rk;21. In

Fig. 2e and f are presented the results for anisotropic

media 1 and 2, with different anisotropy angles (with

opposite signs) and different thermal conductivity ratios

Rk;2 and Rk;21.

From the presented results, one can see clearly the

influence of anisotropy on the temperature distribution

and on the paths followed by heat when crossing the

domain. The results suggest that particular arrange-

ments of anisotropic materials can be made in order to

have composite materials with the desired thermal per-

formance, in terms of overall heat transfer, temperature

distribution and heat path. It can be observed a marked

difference in the slopes of the heatlines at the interface

between media 1 and 2. This is the result of a combi-

nation of different anisotropy angles of the adjacent

media (Fig. 2a and b, where medium 2 is isotropic, and

Fig. 2d, e and f), and different thermal conductivity ra-

tios Rk;1, Rk;2 and Rk;21 (Fig. 2a, b, d and f). For the

results in Fig. 2e, only the effect of different anisotropy

angles is present at the interface. In Fig. 2c there is no

difference in the slopes of the heatlines at the interface,

as media 1 and 2 have the same heat transfer properties.Fig. 1. Physical model and geometry.
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In summary, from the heatlines can be obtained a

complete picture of the conduction heat transfer process

taking place in anisotropic media and, in particular, at

the interface between adjacent media of different thermal

properties.

Conduction heat transfer in isotropic solids takes

place in a way such that the heat flow vector has an

opposite sense to the temperature gradient, but both

vectors are perfectly aligned. In anisotropic media such

vectors are not aligned, and they form an angle between

90� and 180�. This can be observed by superposing

isotherms and heatlines for any case of Fig. 2a–f. At a

selected point, the heat flow vector is tangent to the

corresponding heatline, and the temperature gradient is

normal to the corresponding isotherm and points in the

direction of increasing temperature values.

It is also observed the perpendicularity of the

isotherms relative to the adiabatic walls in the case of

Fig. 2. Isothermals (left) and heatlines (right) for pure conduction problems: (a) c1 ¼ 30�, Rk;1 ¼ 0:5, Rk;2 ¼ 1:0, Rk;21 ¼ 1:0,

DH� ¼ 0:09, H�;max ¼ 0:92; (b) c1 ¼ 60�, Rk;1 ¼ 0:1, Rk;2 ¼ 1:0, Rk;21 ¼ 0:5, DH� ¼ 0:03, H�;max ¼ 0:29; (c) c1 ¼ 30�, Rk;1 ¼ 0:1, c2 ¼ 30�,
Rk;2 ¼ 0:1, Rk;21 ¼ 1:0, DH� ¼ 0:06, H�;max ¼ 0:58; (d) c1 ¼ 60�, Rk;1 ¼ 0:1, c2 ¼ 30�, Rk;2 ¼ 0:1, Rk;21 ¼ 0:5, DH� ¼ 0:02, H�;max ¼ 0:22;

(e) c1 ¼ 30�, Rk;1 ¼ 0:1, c2 ¼ �30�, Rk;2 ¼ 0:1, Rk;21 ¼ 1:0, DH� ¼ 0:07, H�;max ¼ 0:68; and (f) c1 ¼ 60�, Rk;1 ¼ 0:1, c2 ¼ �30�, Rk;2 ¼ 0:5,

Rk;21 ¼ 0:1, DH� ¼ 0:01, H�;max ¼ 0:12. DT� ¼ 0:1 in all cases.
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isotropic media. When the media are anisotropic, such

perpendicularity does not exist. For isotropic media the

heatlines are perpendicular to the isothermals, a be-

haviour that is not observed for anisotropic media.

4.2. Natural convection in a square porous enclosure

Additionally to the dimensionless variables and

parameters introduced in the previous situation, the

velocity components are made dimensionless as u� ¼
u=ðaðn;kÞ;1=LÞ and v� ¼ v=ðaðn;kÞ;1=LÞ, and the stream-

function is made dimensionless as w� ¼ w=ðqaðn;kÞ;1Þ. The

streamfunction is null over all the impermeable bound-

aries of the domain. The permeability anisotropy angles

for media 1 and 2, d1 and d2, respectively, the ratio be-

tween the principal permeabilities RK ¼ Kg;K=Kn;K for

media 1 and 2, RK;1 and RK;2, respectively, and the ratio

between the principal permeabilities of media 2 and 1,

RK;21 ¼ Kðn;KÞ;2=Kðn;KÞ;1 are the dimensional parameters

introduced by fluid flow in anisotropic porous media.

The natural convection problem in the square porous

enclosure under analysis introduces another dimen-

sionless parameter, the Darcy Rayleigh number, defined

as Ra ¼ ðgbDTKðn;KÞ;1LÞ=ðmaðn;kÞ;1Þ.

Fig. 2 (continued)
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The two portions of the domain are made of the same

material, that is, the properties are the same over all the

domain. This corresponds to unit values of parameters

Rk;21 ¼ kðn;kÞ;2=kðn;kÞ;1 and RK;21 ¼ Kðn;KÞ;2=Kðn;KÞ;1, as well

as to equal values for the parameters Rk and RK , being

Rk;1 ¼ Rk;2 and RK;1 ¼ RK;2. All the presented results

correspond to the same value of the Darcy Rayleigh

number Ra ¼ 100.

In Fig. 3a are presented the results for isotropic

media 1 and 2 both in what concerns thermal con-

ductivity and permeability. This corresponds to the

usual natural convection heat transfer problem in a

differentially heated square porous enclosure. In Fig.

3b are presented the results for isotropic media in what

concerns thermal conductivity and anisotropic in what

concerns permeability. The anisotropy on permeability

promotes the flow in directions with an angle of 60�
relative to the horizontal. The hot fluid is more forced

toward the neighboring of the upper-right corner, the

�hot� isotherms are more displaced to the right and the

�cold� isotherms suffer a slight displacement to the left.

The thermal gradient is high near the upper-right

Fig. 3. Streamlines (left), isothermals (center) and heatlines (right) for natural convection in a square porous enclosure for Ra ¼ 100

(a) Rk;1 ¼ Rk;2 ¼ 1, RK;1 ¼ RK;2 ¼ 1, Dw� ¼ 0:47, w�;min ¼ �4:72, DH� ¼ 0:40, H�;min ¼ �0:94, H�;max ¼ 3:08; (b) Rk;1 ¼ Rk;2 ¼ 1, RK;1 ¼
RK;2 ¼ 0:1, d1 ¼ d2 ¼ 60�, Dw� ¼ 0:95, w�;min ¼ �9:50, DH� ¼ 0:81, H�;min ¼ �2:15, H�;max ¼ 5:95; (c) Rk;1 ¼ Rk;2 ¼ 0:1, c1 ¼ c2 ¼ 30�,
RK;1 ¼ RK;2 ¼ 0:1, d1 ¼ d2 ¼ 60�, Dw� ¼ 0:92, w�;min ¼ �9:17, DH� ¼ 0:76, H�;min ¼ �1:29, H�;max ¼ 6:28. DT� ¼ 0:1 in all cases.
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Fig. 4. Streamlines (left), isothermals (center) and heatlines (right) for natural convection in a rectangular porous enclosure (left-half of

the domain) and pure conduction on the right-half of the domain, for Ra ¼ 100 and Rk;21 ¼ 10: (a) Rk;1 ¼ Rk;2 ¼ 1, RK;1 ¼ 1,

Dw� ¼ 0:40, w�;min ¼ �4:04, DH� ¼ 0:39, H�;min ¼ �0:74, H�;max ¼ 3:12; (b) Rk;1 ¼ 1, Rk;2 ¼ 0:1, c2 ¼ 45�, RK;1 ¼ 1, Dw� ¼ 0:31, w�;min ¼
�3:12, DH� ¼ 0:31, H�;min ¼ �0:85, H�;max ¼ 2:26; (c) Rk;1 ¼ 1, Rk;2 ¼ 0:1, c2 ¼ 45�, RK;1 ¼ 0:1, d1 ¼ �30�, Dw� ¼ 0:38, w�;min ¼ �3:80,

DH� ¼ 0:37, H�;min ¼ �1:10, H�;max ¼ 2:56; (d) Rk;1 ¼ 0:1, c1 ¼ �30�, Rk;2 ¼ 0:1, c2 ¼ 45�, RK;1 ¼ 0:1, d1 ¼ �30�, Dw� ¼ 0:35,

w�;min ¼ �3:50, DH� ¼ 0:33, H�;min ¼ �0:86, H�;max ¼ 2:47. DT� ¼ 0:1 in all cases.
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corner, with more intense heat transfer in that region.

In Fig. 3c are presented the results for anisotropic

media in what concerns both thermal conductivity and

permeability. In this case, remains valid the explana-

tion made for Fig. 3b for the anisotropy on perme-

ability. Thermal conductivity anisotropy, with an angle

of 30�, promotes conduction heat transfer to the right

side of the enclosure. The �hot� isotherms are forced

towards the cold wall and the �cold� isotherms are

forced towards the hot wall, with intense thermal

gradients near the upper-right and lower-left corners of

the enclosure.

It is clear from the Fig. 3a–c the importance of an-

isotropy over the transport phenomena taking place, as

well as the valuable pictures given by the streamlines and

by the heatlines for a most complete understanding and

analysis of the problem. From Fig. 3c it is observed how

the combined anisotropy of both the thermal conduc-

tivity and permeability can concentrate the heat transfer

path followed by heat transfer near the upper-right

corner of the enclosure. The difference of the dimen-

sionless heatfunction between the upper and lower

horizontal adiabatic walls is the global Nusselt num-

ber for the enclosure, evaluated as _QQ0
convection=½kðn;kÞ;1 

ðTH � TCÞ	.

4.3. Conjugate conduction/convection heat transfer

In this case, the left-half of the domain is a rect-

angular enclosure with an aspect ratio 1=2, and the

right-half of the domain is a solid. The dimensionless

variables and parameters introduced in the previous

situations are sufficient to describe the present situation.

All the presented results correspond to the same values

Ra ¼ 100 and Rk;21 ¼ 10.

In Fig. 4a are presented the results for isotropic

medium 1, both in what concerns thermal conductivity

and permeability, and isotropic solid medium 2. In Fig.

4b are presented the results for isotropic medium 1, both

in what concerns thermal conductivity and permeability,

and anisotropic solid medium 2. In Fig. 4c are presented

the results for isotropic medium 1 in what concerns

thermal conductivity and anisotropic in what concerns

permeability, and anisotropic solid medium 2. In Fig. 4d

are presented the results for anisotropic medium 1 in

what concerns both thermal conductivity and perme-

ability, and anisotropic solid medium 2.

Analysis of Fig. 4a–d shows the importance of an-

isotropy over the transport phenomena taking place,

which cannot be neglected in many practical situations.

The streamlines and the heatlines show to be very ef-

fective tools to visualize the heat and mass transfers

occurring in the considered domain, and the proposed

unifying procedure shows to be very effective to deal

with conjugate conduction/convection heat transfer

problems.

5. Conclusions

The main conclusion is that the streamfunction,

heatfunction and massfunction for two-dimensional

domains of (heat and mass transfer) anisotropic media

can be unified both from the physical and numerical

viewpoints. Mass transfer in saturated porous media has

been considered through the Darcy flow model. Evalu-

ation of a primitive conserved variable / is a problem

formally similar to the evaluation of its related function

U, whose contour plots are used for visualization pur-

poses.

Attention needs to be given to the diffusion coeffi-

cients of the streamfunction, heatfunction and mass-

function, which are uniquely obtained from the diffusion

coefficients of the corresponding primitive variables.

This is important in media of constant properties, and

crucial in conjugate heat and/or mass transfer problems,

occurring in domains with portions of different (or even

very different) transport properties.

Transport phenomena in anisotropic media include

additional diffusive terms in the differential equations,

which are not present when dealing with isotropic

media. The same is true also for the streamfunction,

heatfunction, and massfunction when dealing with an-

isotropic media. All the diffusive terms can be consid-

ered in a fully implicit way, the numerical solution being

obtained simultaneously in the overall domain even if it

composed by portions with different transport proper-

ties. The numerical procedures and code routines de-

signed for isotropic media need only slight modifications

to deal with anisotropic media through fully implicit

consideration of the aforementioned additional diffusive

terms.

The proposed unification is very useful from the

physical and numerical viewpoints. The primitive con-

served variables and the streamfunction, heatfunction

and massfunction fields can be evaluated by using the

same procedures and code routines, primarily designed

to evaluated the fields of primitive conserved variables.

In the case of fluid flow in saturated porous media, the

streamfunction is useful for visualization purposes and it

is also frequently the field from which the velocity field is

evaluated.

Contour plots of streamfunction, heatfunction and

massfunction are the effective tools to visualize the

paths followed by the involved transport phenomena,

as well as to quantify such transport phenomena.

When expressed in dimensionless form, the stream-

function, heatfunction and massfunction are closely

related with the dimensionless transfer parameters such

as the Nusselt and/or Sherwood numbers. Illustration

results are very clear about the capabilities and use-

fulness of the proposed unified approach for problems

ranging from pure conduction heat transfer to con-

jugate conduction-convection heat transfer. This
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approach was designed to deal with anisotropic media,

the case of isotropic media emerging as a particular

case.

As many of the actually used materials are aniso-

tropic, this unification is of special importance for

practical purposes, both to evaluate the transport phe-

nomena occurring in anisotropic media as well as to

visualize such transport phenomena using the most ef-

fective tools for that.
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